

5. Holonomic vs Non-Holonomic Systems

Holonomic System

Constraints integrable

in coordinate

uses Lagrangian

e: Simple
problem

Non-Holonomic System

Constraints
non-integrable

Involves velocities

More complex
formulation

Example: Rolling wheel

6. Scleronomous and Rheonomous Constraints

(a) Scleronomous Constraint

- Time-independent

$$f(q_1, q_2, \dots, q_n) = 0$$

Example: Particle on a fixed surface

(b) Rheonomous Constraint

- Time-dependent

$$f(q_1, q_2, \dots, q_n, t) = 0$$

Example: Bead on a moving wire

Share a link to chat?

This creates a copy that others can chat with

7. Importance in Analytical Mechanics

- Basis for **generalized coordinates**
- Essential for applying **Lagrange's equations**
- Simplifies equations of motion
- Widely used in **theoretical and mathematical physics**

8. Key Points for Exams

- Definition of holonomic constraint
- Mathematical condition
- Difference between holonomic and non-holonomic

↓

- At least **two standard examples**

Ask ChatGPT

Ask ChatGPT

